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BACKGROUND: Exposure mixtures frequently occur in data across many domains, particularly in the fields of environmental and nutritional epidemiol-
ogy. Various strategies have arisen to answer questions about exposure mixtures, including methods such as weighted quantile sum (WQS) regression
that estimate a joint effect of the mixture components.

OBJECTIVES:We demonstrate a new approach to estimating the joint effects of a mixture: quantile g-computation. This approach combines the infer-
ential simplicity of WQS regression with the flexibility of g-computation, a method of causal effect estimation. We use simulations to examine
whether quantile g-computation and WQS regression can accurately and precisely estimate the effects of mixtures in a variety of common scenarios.
METHODS: We examine the bias, confidence interval (CI) coverage, and bias–variance tradeoff of quantile g-computation and WQS regression and
how these quantities are impacted by the presence of noncausal exposures, exposure correlation, unmeasured confounding, and nonlinearity of expo-
sure effects.

RESULTS: Quantile g-computation, unlike WQS regression, allows inference on mixture effects that is unbiased with appropriate CI coverage at sam-
ple sizes typically encountered in epidemiologic studies and when the assumptions of WQS regression are not met. Further, WQS regression can mag-
nify bias from unmeasured confounding that might occur if important components of the mixture are omitted from the analysis.
DISCUSSION: Unlike inferential approaches that examine the effects of individual exposures while holding other exposures constant, methods like
quantile g-computation that can estimate the effect of a mixture are essential for understanding the effects of potential public health actions that act on
exposure sources. Our approach may serve to help bridge gaps between epidemiologic analysis and interventions such as regulations on industrial
emissions or mining processes, dietary changes, or consumer behavioral changes that act on multiple exposures simultaneously. https://doi.org/
10.1289/EHP5838

Introduction
Epidemiologists are increasingly confronted with arrays of
unique, yet sometimes highly correlated, exposures of interest
that may arise from similar sources and provide unique chal-
lenges to inference. The myriad analytic methods for mixtures
data have been subject to a number of recent reviews and work-
shops about mixtures data (Braun et al. 2016; Carlin et al. 2013;
Hamra and Buckley 2018). A clear theme has emerged that
numerous questions can be answered in mixtures data, and differ-
ent methods are best suited for different questions. For example,
we might be interested in questions about the mixture (clustering
of exposures, projecting exposures to a lower dimensional space)
or questions about the health effects of individual components of
the mixture or joint effects of multiple (perhaps all) components
of the mixture. Here, we focus in particular on one of these many
questions that can be asked of epidemiologic data on exposure
mixtures: How can the mixture as a whole, rather than individual
components, influence the health of the populations exposed to

the multitude of components in the mixture? Each of these com-
ponents may act independently, synergistically, or antagonisti-
cally, or they may be inert with respect to the health outcomes of
interest. Focusing on the mixture as a whole is advantageous, as
it can provide simplicity of inference, integrate over multiple
exposures that likely originate from similar sources, and often
map directly onto the effects of potential public health interven-
tions (Robins et al. 2004). The mixture effect is a useful metric
even in light of policies that target single exposures. Particulate
matter, for example, is a target of regulation by the U.S.
Environmental Protection Agency, but the actual interventions
that have reduced particulate matter occur on the sources of pol-
lution, and such interventions rarely act on only one element of
the mixture of air pollutants. Thus, better quantification of the
effects of reducing particulate matter would account for joint
reductions of other pollutants from particulate matter sources,
such as sulfur dioxide and nitrogen oxides (from sources such as
coal-fired power plants) or ozone and carbon monoxide (from
sources such as automobile emissions).

One of the analytic approaches developed specifically for esti-
mating effects of exposure mixtures, weighted quantile sum
(WQS) regression, has become increasingly used as an analytic
approach for exposure mixtures in relation to health outcomes
(Yorita Christensen et al. 2013; Deyssenroth et al. 2018; Nieves
et al. 2016). This approach is based on developing an exposure
index that is a weighted average of all exposures of interest after
each exposure is transformed into a categorical variable defined
by quantiles of the exposures. The index, representing the expo-
sure mixture as a whole, is then used in a generalized linear
model to estimate associations with health outcomes. WQS
regression has a specific goal of estimating the effect of the mix-
ture as a whole. While several methods from the causal inference
literature are capable of estimating the effect of a whole mixture

Address correspondence to A.P. Keil, Department of Epidemiology, CB
7435, University of North Carolina, Chapel Hill, NC 27599-7435. Telephone:
919-966-6652. Fax: 919-966-2089. Email: akeil@unc.edu
Supplemental Material is available online (https://doi.org/10.1289/EHP5838).
The authors declare they have no actual or potential competing financial

interests.
Received 1 July 2019; Revised 28 February 2020; Accepted 24 March

2020; Published 7 April 2020.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehponline@niehs.nih.gov. Our staff
will work with you to assess and meet your accessibility needs within 3
working days.

Environmental Health Perspectives 047004-1 128(4) April 2020

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP5838.Research

https://doi.org/10.1289/EHP5838
https://doi.org/10.1289/EHP5838
mailto:akeil@unc.edu
https://doi.org/10.1289/EHP5838
http://ehp.niehs.nih.gov/accessibility/
mailto:ehponline@niehs.nih.gov
https://doi.org/10.1289/EHP5838


(Howe et al. 2012; Kang and Schafer 2007; Keil et al. 2018a;
Robins et al. 2004), WQS regression has the advantage over these
methods of a simple implementation. Although such approaches
from the causal inference literature (e.g., inverse probability
weighting and g-computation) can be implemented with standard
regression software (Cole and Hernán 2008; Keil et al. 2014;
Snowden et al. 2011), WQS regression is available in a single,
self-contained R function that only requires specification of a sin-
gle model (Czarnota et al. 2015).

Despite the attractive features of this approach, there are
two notable reasons to be cautious when applying WQS regres-
sion. First, WQS regression requires what we call a directional
homogeneity assumption, which assumes that all exposures
have coadjusted associations with the outcome that are in the
same direction (or can be coded a priori to meet this assump-
tion) or are null. Second, WQS regression also assumes the
individual exposures have linear and additive effects. Little is
known about the demonstrable benefits of these assumptions
when they are true and whether there are adverse impacts of
these assumptions in realistic epidemiologic data where such
assumptions would never be met exactly. Third, little theoreti-
cal statistical framework (Carrico et al. 2015) and few simula-
tions (Czarnota et al. 2015) exist that assess the internal validity
of effect estimation [e.g., bias, confidence interval (CI) cover-
age] of WQS. While other statistical approaches have been
developed to estimate overall mixture effects that are discussed
in previously noted reviews and workshops, we know of no
methods other than WQS regression that can provide parsimo-
nious parametric inference for the effect of a mixture of expo-
sures (e.g., a low-dimensional mixture dose–response such as a
single coefficient corresponding to the change in the outcome
per unit of joint exposure). Thus, there is need for additional
methods that give similar inference without making such strong
assumptions, as well as an analysis of the conditions under
which such assumptions are warranted and possibly beneficial.

In the current manuscript, we demonstrate a new approach to
estimating the effects of an exposure mixture, which we call
quantile g-computation, that shares the simplicity of interpreta-
tion and computational ease of WQS regression while not assum-
ing directional homogeneity. Further, our approach inherits many
features of causal inference methods, which allow for nonlinear-
ity and nonadditivity of the effects of individual exposures and
the mixture as a whole. We note explicit connections between
these two approaches and demonstrate when they give equivalent
estimates. We compare, using simulations, the validity of our
approach and WQS regression for hypothesis testing, estimating
the effects of a mixture, the control of confounding by correlated
exposures, the impact of unmeasured confounding, and the
impact of nonlinearity and nonadditivity on effect estimates.

Methods
We first describe WQS regression in relation to standard general-
ized linear models. We then introduce quantile g-computation as
a generalization and extension to WQS regression.

WQS Regression
WQS regression developed gradually out of methods designed to
estimate the relative contributions of exposures in a mixture to a
single health outcome. WQS regression requires inputs similar to
a standard regression model: an outcome (Y), a set of exposures
of interest (X), and a set of other covariates or confounders of in-
terest (Z). WQS starts by transforming X into a set of categorical
variables in which the categories are created using quantiles of X
(i.e., quantiles of each variable) as cut points, which we denote as

Xq. The output of WQS regression consists of two parts: a regres-
sion model between the outcome of interest and an index expo-
sure (possibly adjusting for covariates), and a set of weights that
describe the contribution of each exposure to the single index ex-
posure and overall effect estimate.

For continuous Y measured in individual i, the regression
model part of WQS regression can be expressed as

Yi =b0 +wSi + ei,

where b0 is the model intercept, Si is the exposure index (defined
below), w is the coefficient representing the incremental change
in the expected value of Y per unit increase in the Si, and ei is the
error term. The exposure index is defined as in Equation 1 where
wj are the weights for each exposure (here we have d exposures)
and Xq

ji is the quantized version of the jth exposure for the ith
individual.

Si =
Xd
j=1

wjX
q
ji : (1)

That is, if we use quartiles, then Xq
ji will equal 0, 1, 2, or 3 for

any participant, corresponding to whether the exposure Xji falls
into the 0–25th, 25th–50th, 50th–75th, or 75th–100th percentile
of that exposure. The weights are estimated as the mean weight
across bootstrap samples of the WQS regression model (often in
a distinct training set, which is discussed below) with all weights
forced to sum to 1.0 and have the same sign [referred to as a non-
negativity/nonpositivity constraint, which is enforced via con-
strained optimization or post hoc selection of positive coefficients
from an unconstrained model (Carrico et al. 2015)]. These con-
straints imply that all exposures contribute to Si in the same
direction. As a consequence, for w to be an unbiased and consist-
ent estimator of an overall effect of Xq on Y, we must assume
directional homogeneity: All exposures must have the same
direction of effect (inclusive of the null) with the outcome.

For intuition purposes, we can express a WQS regression as a
standard linear model for the quantized exposures, given by
Equation 2:

Y = b0 +w
Xd
j=1

wjX
q
j + e= b0 +

Xd
j=1

bjX
q
j + e, (2)

where we have suppressed subscript notation for individuals for
clarity. In fact, if the directional homogeneity assumption holds,
then all bj are, in fact, positive and need not be constrained
(ignoring sampling variability), and the WQS regression
approach is equivalent to a generalized linear model in very large
samples [as suggested by Carrico et al. (2015)]. This equivalence
is useful because generalized linear models do not require direc-
tional homogeneity, so this suggests, at the very least, that WQS
regression will have similar inference to a generalized linear
model, so generalized linear models might form the basis of an
alternative to WQS regression.

There is little guidance on exactly how WQS regression
results can be interpreted because the index effect is not well-
defined in the sense that it does not map onto real-world quanti-
ties. However, we can make some progress on what WQS esti-
mates in large samples when the underlying model (Equation 2)
is correct and exposure effects are in the same direction. We start
by noting that an increase in the exposure index value from Si to
Si +1 (the effect of which is estimated in a regression of the out-
come on the exposure index) can be equated to a generalized lin-
ear model under directional homogeneity in the following
derivation:
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(3)

Thus, by Equation 3, the mixture effect w is equivalent to the
sum of the b coefficients in the underlying linear model, and the
extension to alternative link functions is trivial. Such an interpre-
tation suggests that we might be able to estimate w using existing
tools from causal inference. In small or moderate samples, WQS
regression may not act as the large sample results suggest, even
under directional homogeneity. This occurs due to sampling vari-
ability and because WQS regression utilizes sample splitting,
whereby it first estimates the weights in the training set and then
estimates the mixture effect in the validation set, given those
weights. Thus, small/moderate sample performance of WQS is
poorly understood because it has not been explored sufficiently in
the literature.

Quantile g-Computation
One side effect of the large sample equivalence between general-
ized linear models and WQS regression (assuming directional
homogeneity) is that, assuming there is no unmeasured confound-
ing, WQS regression can be used to estimate causal effects if the
linear model above is correct (which implies that quantization of
X is appropriate). This holds because generalized linear models
are often used as the basis of causal effect estimation (Cole et al.
2013; Daniel et al. 2011; Edwards et al. 2014; Keil and
Richardson 2017; Keil et al. 2018b; Neophytou et al. 2016;
Richardson et al. 2018; Robins 1986; Snowden et al. 2011) or the
model parameters may be considered causal estimands (Daniel
et al. 2013). From an intervention perspective (and assumptions
noted below), each bj is interpretable as the effect of increasing
Xj by one unit, so w is interpretable as the effect of increasing all
Xj by one unit at the same time. In fact, w is equivalent to the g-
computation estimator (Snowden et al. 2011) of a joint marginal
structural model for quantized exposures, which estimates the
effect of increasing every exposure simultaneously by one quan-
tile. That is, w can estimate a causal dose–response parameter of
the entire exposure mixture. While g-computation has been
described in detail by multiple authors in both frequentist and
Bayesian settings (Keil et al. 2014, 2018a; Snowden et al. 2011;
Taubman et al. 2009; Westreich et al. 2012; Young et al. 2011),
we note here that it is a generalization of standardization that
uses the law of total probability to compute estimates of the (usu-
ally population average) expected outcome distribution under
specific exposure patterns. It is often combined with causal infer-
ence assumptions to select specific variables and models that, in
practice, are used to predict, or simulate, outcome distributions
that we would expect under different interventions on an expo-
sure that may depend on time-fixed or time-varying factors.

Under standard causal identification assumptions [including
causal consistency, no interference, and no unmeasured confound-
ing, outlined in detail in Hernan and Robins (2010)] and correct
model specification, g-computation (or the g-formula) can yield
the expected outcome, had we been able to intervene on all expo-
sures of interest (Robins 1986; Robins et al. 2004). Under these
assumptions, g-computation can be used to estimate causal effects
of time-fixed or time-varying exposures. As described later in this

section, g-computation can be used to estimate the parameters of a
marginal structural model, which can quantify causal dose–
response parameters such as the change in the expected outcome
expected as exposures are increased (i.e., by manipulating expo-
sures as in an intervention). The causal assumptions are universal
to all inferential approaches (Greenland 2017); any analysis should
strive to measure all confounders and specify models as accurately
as is reasonably possible. We mention them here to be clear about
how w can be interpreted. In the special case of time-fixed expo-
sures that enter into the model only with linear terms (additivity
and linearity), the g-computation estimator ofw is given as the sum
of all regression coefficients of the exposures of interest. w corre-
sponds to the change in Y expected for a one-unit change in all
exposures. Variance can be obtained using standard rules for esti-
mating the sum of random variables and the covariance matrix of a
linear model, which means that (in this simple setting) this
approach requires little more computational time than a standard
linearmodel.

When g-computation is performed using quantized exposures,
we refer to the approach as quantile g-computation. Quantile
g-computation allows us to estimate both w and the weights
when the directional homogeneity assumption holds, but we will
demonstrate that it allows valid inference regarding the effect of
the whole exposure mixture, and individual contributions to that
mixture, when directional homogeneity does not hold.

The first step of quantile g-computation is to transform the
exposures Xj into the quantized versions Xq

j . Second, we fit a lin-
ear model (where we have omitted other confounders Z for nota-
tional simplicity, but they could also be included):

Yi = b0 +
Xd
j=1

bjX
q
ji + ei:

Third, assuming directional homogeneity (for now), w is

given as
Pd
j=1

bj (where bj is the effect size for exposure j) and

the weights for each exposure (indexed by k) are given as

wk = bk=
Pd
j
bj (i.e., the weights are defined to sum to 1.0). When

directional homogeneity does not hold, quantile g-computation
redefines the weights to be negative or positive weights, which
are interpreted as the proportion of the negative or positive partial
effect due to a specific exposure (and positive and negative
weights are defined to both sum to 1.0). When exposures may
have nonlinear effects on the outcome, we can extend this approach
to include (for example) polynomial terms for Xq

j in a model such

as Yi = b0 +
Pd
j=1

bjX
q
ji +

Pd
j=1

bj+d X
q
jiX

q
ji + ei or a model that uses in-

dicator variables for each level of a quantized exposure variable.
Under nonlinearity or when we include product terms between
exposures (or between exposures and confounders), the weights
themselves are not well-defined (because the proportional contri-
bution of an exposure to the overall effect would then vary accord-
ing to levels of other variables and no longer function as weights),
and w is no longer simply a sum of the b coefficients. However, w
is still easily estimable via standard g-computation algorithms
[w is a parameter of a marginal structural model estimated via
g-computation, which generalizes the approach of Snowden et al.
to a multilevel joint exposure (Snowden et al. 2011)], and the var-
iance can be estimated with a nonparametric bootstrap. Briefly [as
described in Snowden et al. (2011)], this approach involves the fol-
lowing steps: a) fit an underlying model that allows individual
effects of exposures on the outcome, including interaction and
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nonlinear terms; b) make predictions from that model at set levels
of the exposures; and c) fit a marginal structural model to those pre-
dictions. Under linearity and additivity, this algorithm yields
equivalent estimates of w to the algorithm given above but at a
higher computational burden. This further extension allows the
effect of the whole mixture to be nonlinear as well (which is gener-
ally good practice if individual exposures are expected to have non-
linear/nonadditive effects). Extension to binary outcomes is based
on a logistic model for PrðY =1jXqÞ, where w can represent log
odds ratios or log risk ratios, and this approach can also be
extended to survival outcomes by using the Cox proportional haz-
ards model as the underlying model to estimate hazard ratios that
quantify a mixture effect. These methods are implemented in the R
package qgcomp.

As we show below, quantile g-computation can be used to
consistently estimate effects of the exposure mixture in settings
in which WQS regression may be biased or inconsistent but
also yield equivalent estimates with WQS regression in large
samples when its assumptions hold. In addition to avoiding the
directional homogeneity assumption, quantile g-computation can
be extended to settings in which the effects of exposures may not
be additive (e.g., we might wish to include interaction terms
among Xq) or nonlinear (e.g., we may wish to include polynomial
terms among Xq), and the exposure mixture effect may also be
nonlinear. WQS regression, on the other hand, assumes additivity
among exposures and allows nonlinear effects that are restricted
to polynomial terms for Si. The index exposure is still derived
under a linear model, however, so it is not strictly equal to the
quantile g-computation estimate under nonlinearity of the mix-
ture effect, which is based on the fit of a marginal structural
model and retains its interpretation as the effect of the mixture.

To demonstrate aspects of quantile g-computation and to
compare the performance of quantile g-computation and WQS
regression across a range of scenarios, we performed a number of
simulation analyses that assess bias and CI coverage for effect
estimates, and power and type I error for hypothesis tests.

Simulation Methods
We simulate data on a mixture of d exposures and a single, con-
tinuous outcome, where we let d equal 4, 9, or 14 in sample sizes
of 100 or 500 (and up to 5,000, when noted). We simulate expo-
sures such that they exactly equal the quantiles. For example, X1
in each setting is simulated as a multinomial variable that takes
on values 0, 1, 2, and 3, each with probability 0.25, such that
X1 =Xq

1 in each case (q=4 in all scenarios). Note that this simu-
lation scheme does not allow us to quantify potential bias from
quantizing exposures that are measured on a continuous scale but
enables us to isolate the factors we are interested in and avoid
conflating bias from the estimation approach with bias from
model misspecification.

Unless otherwise specified, we simulate the outcome accord-
ing to the following model:

Y = b0 +b1X1 + b2X2 + e=b0 +ww1X1 +ww2X2 + e:

All other exposures X3 . . .Xd are assumed to be noise expo-
sures (except in scenario 4 below) with no effect on the outcome
(equivalently, b3 = � � � =bd =0), and e is simulated from a stand-
ard normal distribution [mean= 0, standard deviation ðSDÞ=1]
for every scenario. The term noise exposures is used because,
unless otherwise specified, they are not correlated with other
exposures and do not contribute to the outcome. By varying d,
we emulate exploratory studies of mixtures when some exposures
may not affect the outcome but the number of noncausal expo-
sures may vary by context.

Large sample simulation. We demonstrate, empirically, that
WQS regression (under directional homogeneity) is equivalent to
a generalized linear model fit with quantized exposures (and thus
quantile g-computation) in large samples. To demonstrate the
appropriate interpretation of WQS regression output and large
sample equivalence between WQS regression and generalized
linear when the directional homogeneity assumption, linearity,
and additivity all hold, we performed a simulation in a single
large data set (n=100,000) with four exposures, w=5:0, and
w1 =

b1
w =0:5, b2

w =0:25, b3
w =0:15, b4

w =0:1. We analyze these
data using WQS regression and quantile g-computation and
report estimates of w,b, and w for each approach.

Small and moderate sample simulations. We also contrast
our new method with WQS regression in simulation settings with
small or moderate sample sizes (i.e., typical sizes of observatio-
nal studies) and when the necessary assumptions of WQS regres-
sion may be violated.

To address our study questions, we analyze data simulated
under the scenarios given in Table 1 and described here:

1. b1 = b2 =w=0, i.e., are null hypothesis tests ðH0:w=0Þ
valid in each approach when no exposures have effects on
the outcome?

2. b1 = 0:25, b2 = − 0:25, andw=0, i.e., are null hypothesis
tests ðH0:w=0Þ valid in each approach when exposures
have counteracting effects on the outcome (directional ho-
mogeneity does not exist)?

3. b1 = 0:25, b2 = 0,w=0:25, w1 = 1:0, andw2 = 0:0, i.e., are
estimates and CIs valid in each approach when directional
homogeneity does exist and only a single exposure is
causal?

4. b1 =b2 = � � � =bd=
0:25
d , w=0:25, andw1 =w2 = � � � =wp=

1
p, i.e., are estimates and CIs valid in each approach when
directional homogeneity does exist and all exposures have
causal effects?

5. b1=0:25, b2 2f−0:2,−0:1,−0:05g,w2f0:05, 0:15,0:25g,
qX1,X2

20,0:4,0:75, where qX1,X2
is the Pearson correlation

coefficient between X1 and X2, i.e., are estimates and CIs
valid in each approach when directional homogeneity does
not exist due to negative copollutant confounding?

6. b1 2 f0, 0:25, b2 =0:0, bC=0:5g,w 2 f0, 0:25, andqX,C=
0:75g, where bC is the effect size of an unmeasured con-
founder C, and qX,C is the Pearson correlation coefficient
between X1 and C (where C is generated similarly to other
exposures), i.e., what are the impacts of unmeasured con-
founding on the validity of each approach?

7. b1 = 0:25, b2 = 0:25, b1,2 = −0:15, w1 = 0:50, and w2 =
−0:15, where b1,2 is the coefficient for the product term
X1X2 in the underlying model, and w1 and w2 are the overall
exposure coefficients for a linear and squared term for overall
exposure, i.e., are estimates and CIs valid in each approach
when exposures interact on themodel scale and the overall ex-
posure effect is nonlinear? For this analysis, the underlying
model for quantile g-computation included a product term for
X1X2, and the overall exposure effect was allowed to be non-
linear by including linear and quadratic terms.

8. b1 = 0:25, b2 = 0:25, b1,1 = −0:15, w1 = 0:50, and w2 =
−0:15, where b1,1 is the coefficient for the product termX1X1
in the underlying model, and w1 and w2 are the overall expo-
sure coefficients for a linear and squared term for overall expo-
sure, i.e., are estimates and CIs valid in each approach when
exposures and the overall exposure effect are nonlinear? For
this analysis, the underlying model for quantile g-computation
included a term for X1X1, and the overall exposure effect was
allowed to be nonlinear by including linear and quadratic
terms.
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Simulating correlated, quantized exposures. For scenario 6,
we used a novel approach to induce a correlation (q) between
two exposures X1 and X2 of qX1,X2

by drawing values of X2i =X1i
with probability

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qX1,X2ð Þp

and otherwise drawing from other
values of X1. This sampling scheme ensured that exposures took
on values of 0, 1, 2, or 3 with equal probability so that modeling
assumptions would be met in all simulations. The simulation
scheme was identical when considering unmeasured confound-
ing, with the exception that we did not adjust for the unmeasured
confounder in analyses.

For all scenarios, we simulated z data sets and analyzed each of
them usingWQS regression [using the gWQS (version 2.0; Renzetti
et al.) package defaults in R (version 2.13; R Development Core
Team), weights assumed positive] and quantile g-computation
[using the qgcomp (version 1.3; Keil) package defaults in R]. We
report statistics relating to thew parameter from each approach: bias
(the mean estimate minus the true value of w, which is known in
advance), the square root of the mean variance estimate from each
method across the z data sets [root mean variance (RMVAR)], the
SD of the bias across all z data sets [Monte Carlo standard error
(MCSE)], the 95% CI coverage (proportion of estimated CIs that
included the true value), and the type I error (when the null hypothe-
sis is true) or statistical power (when the null hypothesis is false).
Our main results are for sample sizes of 500, but we evaluated
alternative sample sizes (n=100, 2,000, and 5,000) in sensitivity
analyses. A sample R code for simulation analyses is given in the
SupplementalMaterial.

Results

Large Sample Simulation
In large samples (n=100,000) in which the assumptions of WQS
hold, WQS regression and quantile g-computation give identical,
unbiased estimates of the overall exposure effect and the weights,
although WQS regression yields a smaller test statistic (larger

p-value) of the null hypothesis test due to the use of sample split-
ting (Table 2). Weights are displayed graphically in Figures S1
and S2.

Small and Moderate Sample Simulations
Validity under the null hypothesis w= 0 when exposures a)
have no effect (scenario 1), or b) exposures have counteracting
effects (scenario 2). Under the null hypothesis when no expo-
sures affect the outcome, both quantile g-computation and WQS
regression yield type 1 error rates close to the alpha level of 0.05
at all values of d we examined (Table 3). When some exposures
cause the outcome but there is no overall exposure effect due to
counteracting effects of exposures (b1 = −b2 = 0:25), quantile
g-computation provided a valid test of the null, whereas WQS
regression was biased away from the null, and this bias appeared
to increase with the number of noise exposures included in the
model, which led to type I error rates >90%. Results were similar
at n=100 (Table S1). We note that the results when w=0 do not
depend on whether effects are constrained to be positive or nega-
tive in WQS regression due to symmetry of the linear model.

Validity when w 6¼ 0 (scenarios 3 and 4). When all exposure
effects were either positive or null, quantile g-computation pro-
vided unbiased effect estimates for the overall exposure effect,
whereasWQS regression was biased away from the null (Table 3).
For a single causal exposure (scenario 3), weighed quantile sum
regression was more powerful, with power >90% for up to 14
total exposures, but 95% CIs had poor coverage (57–83%), while
quantile g-computation provided valid CIs but at reduced power.
When all exposures had positive effects (scenario 4), quantile g-
computation was more powerful, and WQS regression was bi-
ased toward the null. Results were generally similar at n=100,
but RMVAR was lower than the MCSE for WQS regression at
n=100, indicating the standard error estimates were biased to be
too small (Table S1).

Validity under copollutant and unmeasured confounding
(scenarios 5 and 6). Under negative copollutant confounding, quan-
tile g-computation was unbiased for all examined values of the total
exposure effect and correlation between the causal exposures (Figure
1). Results were similar for both n=100 and n=500 and across the
number of noise exposures included (Figures S3–S7). WQS regres-
sion was biased at all studied levels of confounding, and the bias
increasedwith the strength of the negative confounder–outcome asso-
ciation and decreasedwith the correlation between the two exposures.
After noting that the standard error of quantile g-computation esti-
mates of w appeared to decrease at higher levels of exposure correla-
tion, we repeated a simpler version of this scenario at higher

Table 1. Summary of simulation scenarios used to explore performance of quantile g-computation and WQS regression for small (n=100)- or moderate
(n=500)-sized samples.

Simulation
scenarioa b1 b2 b1,1 b1,2 bC w1 w2 qX1,X2

qX,C
1 0 0 0 0 0 0 0 0 0
2 0.25 −0:25 0 0 0 0 0 0 0
3 0.25 0 0 0 0 0.25 0 0 0
4b 0.25/d 0.25/d 0 0 0 0.25 0 0 0
5 0.25 −0:2, −0:1, −0:05 0 0 0 0.05, 0.15, 0.2 0 0.0, 0.4, 0.75 0
6 0.25 0 0 0 0.5 0.25 0 0 0.75
7 0.25 0.25 0 −0:15 0 0.5 −0:15 0 0
8 0.25 0.25 −0:15 0 0 0.5 −0:15 0 0

Note: Table columns are as follows: bC , true coefficient for unmeasured confounder C; b1, true coefficient for X1; b2, true coefficient for X2; b1,2, true coefficient for interaction term
X1X2; qX,C , true correlation between X1 and unmeasured confounder C; qX1,X2

, true correlation between X1 and X2; w1, true mixture effect (main term); w2 true mixture effect (quad-
ratic term).
aEach scenario was repeated for sample sizes of 100 and 500 and a total number of exposures of 4, 9, and 14. Outcomes are simulated according to the model

Y = 0+
Pd
j=1

bjXj +b1,1X1X1 +b1,2X1X2 +bCC+ e; where epsilon is the error term; and e∼ Nð0,1Þ.
bd refers to the total number of exposures.

Table 2. Single simulation demonstrating equivalence between WQS and
quantile g-computation in large samples (n=100,000) when all exposures
have effects in the same direction (true w=5:0; trueweights = 0:5,
0:25, 0:15, and 0:1).

Method

Mixture effect Estimated weights

w t-Statistic w1 w2 w3 w4

WQSa 5.00 806 0.50 0.25 0.15 0.10
Q-gcompb 5.00 884 0.50 0.25 0.15 0.10
aWeighted quantile sum regression (R package gWQS version 2.0 defaults).
bQuantile g-computation (R package qgcomp version 1.3 defaults).
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correlations (up to 0.9; n=500, d=4, and b1 =w=0:25) for quan-
tile g-computation only and observed that, following intuition, the CI
width (3:92× standard error) of b1 increased with exposure correla-
tion, but, counterintuitively, the CI width of the overall effect w
decreasedwith exposure correlation (Figure 2).

With increasing numbers of noise exposures, bias due to
unmeasured confounding increasedwithWQS regression,whereas
bias was stable with increasing noise exposures across all sample
sizes studied for quantile g-computation (Figure 3). After noting
that the magnitude of bias for WQS regression seemed to depend
on sample size, we increased the sample size in our analysis (up to
5,000). The difference between the two approaches diminished as
the sample size increased but was present at all sample sizes.

Validity under nonlinearity and nonadditivity (scenarios 7
and 8). When exposure effects were nonlinear and nonadditive,
WQS regression (even allowing for quadratic effects of the expo-
sure index) yielded biased estimates of the quadratic exposure
effects (the main effect of all exposures and the effect of all expo-
sures squared), whereas quantile g-computation yielded unbiased
estimates of exposure effects and associated variances (Table 4).
Quantile g-computation also provided more precise estimates.

Discussion
One of the remarkable and unique aspects of WQS regression in
the context of exposure mixtures is that it specifically estimates a

joint effect of the entire mixture: the effect of increasing all expo-
sures by a single quantile. We show this approach to mixtures
can leverage the existing correlation among exposures, where it
may be difficult, if not impossible, to identify independent effects
among correlated exposures (Snowden et al. 2011). Further, for
exposures such as hazardous air pollutants (White et al. 2019),
phthalates and parabens (Harley et al. 2016; Rudel et al. 2011),
and metals (O’Brien et al. 2019), feasible interventions to address
any individual exposure would likely affect multiple exposures,
leading to natural interest in joint effects. We built on this frame-
work of quantized exposures and a single joint effect by combin-
ing these elements with existing causal inference approaches.
While this bridge is enabled by the large sample equivalence
between WQS regression and quantile g-computationwhen the nec-
essary assumptions of WQS regression are met, we were primarily
motivated by developing an approach for estimating effects of mix-
tures in realistic sample sizes and when these crucial assump-
tions may not be met. To these ends, quantile g-computation
maintains the simple inferential framework of WQS while pro-
viding effect estimates that are robust to routine problems of ex-
posure mixtures.

Under the directional homogeneity, linearity, and additivity
assumptions, we demonstrate that WQS regression can be inter-
preted as an ordinary least-squares linear regression model with a
coefficient that corresponds to the expected change in an outcome
from a simultaneous increase in all exposures by a single

Table 3. Validity of WQS regression and quantile g-computation under the null (no exposures affect the outcome or exposures counteract) and nonnull esti-
mates when directional homogeneity holds; 1,000 simulated samples of n=500. Corresponding estimates for n=100 are provided in Table S1.

Scenario Method da Truthb Biasc MCSEd RMVARe Coveragef Power/type 1 errorg

1. Validity under the null, no exposures are causal WQSh 4 0 0.00 0.09 0.09 0.95 0.05
9 0 –0:01 0.13 0.12 0.94 0.06
14 0 –0:01 0.15 0.15 0.95 0.05

Q-gcompi 4 0 0.00 0.08 0.08 0.94 0.06
9 0 0.00 0.12 0.12 0.95 0.05
14 0 –0:01 0.16 0.15 0.95 0.05

2. Validity under the null, causal exposures counteract WQSh 4 0 0.32 0.08 0.08 0.02 0.98
9 0 0.41 0.11 0.11 0.04 0.96
14 0 0.46 0.14 0.14 0.09 0.91

Q-gcompi 4 0 0.00 0.09 0.09 0.95 0.05
9 0 0.00 0.13 0.13 0.96 0.04
14 0 –0:01 0.16 0.16 0.96 0.04

3. Validity under single nonnull effect WQSh 4 0.25 0.07 0.07 0.07 0.83 1.00
9 0.25 0.15 0.10 0.10 0.67 0.98
14 0.25 0.21 0.14 0.13 0.57 0.94

Q-gcompi 4 0.25 0.00 0.08 0.08 0.94 0.88
9 0.25 0.00 0.12 0.12 0.95 0.52
14 0.25 –0:01 0.16 0.15 0.95 0.36

4. Validity under all nonnull effects with directional homogeneity WQSh 4 0.25 –0:06 0.10 0.09 0.87 0.58
9 0.25 –0:09 0.13 0.13 0.87 0.26
14 0.25 –0:10 0.17 0.15 0.88 0.19

Q-gcompi 4 0.25 0.00 0.08 0.08 0.95 0.86
9 0.25 0.00 0.12 0.12 0.95 0.55
14 0.25 –0:01 0.15 0.15 0.95 0.37

Note: MCSE, Monte Carlo standard error; RMVAR, root mean variance.
aTotal number of exposures in the model.
bTrue value of w, the net effect of the exposure mixture.
cEstimate of w minus the true value.
dStandard deviation of the bias across 1,000 iterations.
eSquare root of the mean of the variance estimates from the 1,000 simulations, which should equal the MCSE if the variance estimator is unbiased.
fProportion of simulations in which the estimated 95% confidence interval contained the truth.
gPowerwhen the effect is nonnull (scenarios 3 and4); otherwise (in scenarios 1 and2), it is the type 1 error rate (false rejection of null), which should equal alpha (0.05here) under a valid test.
hWeighted quantile sum regression (R package gWQS defaults).
iQuantile g-computation (R package qgcomp defaults).
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quantile. Further, the approach is quite powerful when a single
exposure has an effect in the expected direction. However, this
power seems illusory since it results from effect estimates that
are biased away from the null and, in small samples, downwardly
biased variance estimates. Further, we showed that if the multiple
exposures affect the outcome, then WQS regression is biased down-
ward and has reduced power relative to quantile g-computation. For
investigators choosing between WQS and quantile g-computation,
we note that quantile g-computation was less biased than WQS
under every scenario we examined using simulations. Any set of
simulations cannot be considered exhaustive, as individual substan-
tive contexts vary widely. For example, in some scenarios, WQS
demonstrated lower variance, suggesting that there may be a bias–

variance tradeoff when choosing between the methods under certain
contexts (e.g., when no exposures have an effect, WQS may be
more precise). We emphasize, however, that the information driving
the choice between methods is not often known in the context of ex-
posure mixtures, where individual effects are rarely known for all
mixtures components, a priori. In such settings, quantile g-computa-
tion is less prone to bias and appears robust in the sense that it does
not produce or enhance spurious results when the assumptions of
WQS are incorrect.
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Figure 2. Scenario 5: Impact of copollutant confounding on the confidence
interval width of individual exposure estimates (b) and the overall exposure
effect estimate (w) for quantile g-computation (q-gcomp) under exposure
correlations (qX1,X2

) from 0.0 to 0.9 (n=500, d=9, and w=b1 = 0:25).
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Figure 1. Scenario 5: Impact of copollutant confounding on the bias of the overall exposure effect estimate (n=500; d=9) for quantile g-computation (q-gcomp) and
weighted quantile sum (WQS) regression at varying exposure correlations (qX1,X2

of 0.0, 0.4, and 0.75) and varying total effect sizes (w=b1 +b2 2 0:2, 0:15, 0:05).
Boxes represent the median (center line) and interquartile range (outer lines of box) and outliers [points outside of the 1:5× interquartile range ðIQRÞ length whiskers]
across 1,000 simulations. Correspondingfigures for d=4 and 14 and n=100 (d=4, 9, and 14) are provided in Figures S3–S7.
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Figure 3. Scenario 6: Impact of unmeasured confounding on the bias of the
overall exposure effect estimate (mean across 1,000 simulations; n=500,
2,000, or 5,000) for quantile g-computation (q-gcomp) and weighted quantile
sum (WQS) regression with confounder correlation (qX,C) of 0.75, bC =0:5,
and varying the total number of noise exposures (d 2 4, 7, 9, 14, 22, 29, 35).
Note that all lines for quantile g-computation are overlapping and indicate
unmeasured confounding bias is similar across sample sizes and number of
exposures.
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One aspect we did not address in our simulations was the use of
sample splitting in WQS, where the data are divided into training/
validation sets and the weights are first estimated in the training set
and then applied in the validation set to estimate the overall mixture
effect. In small/moderately sized studies, sample splitting has been
useful in other domains (such as in neural network–based machine
learning) to avoid overfit, and in large samples, sample splitting
will not affect inference for consistent estimators of the weights
under directional homogeneity (as demonstrated in our large sam-
ple simulation). The use of sample splitting allows the constraint
on the weights to be on the other side of the null from the overall
mixture effect. In the WQS R package (with default 40%/60%
training/validation split), one can also estimate the weights and the
overall mixture effect in the same data, although such a practice is
generally discouraged. We repeated a limited version of our simu-
lation scenario 1 in which we did this (only n=500) and found that
estimating the weights in the same data as the exposure effect is
estimated in leads to null hypothesis tests for WQS regression (but
not quantile g-computation, which does not utilize sample split-
ting) that are no longer valid with type I error rates >80% under
some scenarios and bias that grows with the number of noise expo-
sures included (Table S3).

Contrasted with quantile g-computation, WQS regression (that
is, the implementation in the gWQS package) has three features: a)
a nonnegativity/nonpositivity constraint on weights (necessitating
the directional homogeneity assumption), b) bootstrap sampling to
estimate weights, and c) sample splitting, which utilizes a training
and validation set for calculation of the weights. As noted by
Carrico et al., several of these elements have demonstrated some
utility in algorithmic learning, suggesting that their use may
improve some aspects of analysis over linear models (Carrico et al.
2015). However, it appears that the nonnegativity constraint
(which implies the directional homogeneity assumption) is respon-
sible for the bias away from the null we observed when directional
homogeneity was violated or when there was a single causal expo-
sure (scenarios 2, 3, and 5). Furthermore, we speculate that boot-
strap sampling is responsible for the bias toward the null when
there weremultiple causal exposures (scenario 4). This latter result
occurs because weights are 1 or 0 for every bootstrap sample

simply due to sampling variability, so we posit there is some bias
toward 0.5 for the weights, which would equate to a bias toward
the null in this scenario. This scenario suggests that, even if we could
a priori change the coding of exposures such that all effects are in the
same direction, WQS regression would still yield biased results with
CIs that are too narrow. We also speculate that sample splitting is re-
sponsible for reduced power of WQS regression relative to quantile
g-computation in some scenarios.

Exposure correlation in an epidemiologic context can indicate
confounding, and we demonstrated that the nonnegativity con-
straint can magnify confounding bias. This result is intuitive.
Using the example of fish consumption and cognitive functioning,
it is likely that the consumption of docosahexaenoic acid (DHA)
from fish improves cognitive health, but fish are also sources of
mercury exposure. If we analyzed these exposures in relation to
cognitive functioning together under a nonpositivity constraint, the
effect of DHA would likely be forced to be near zero. This would
be roughly equivalent to leaving DHA out of the model altogether,
which would result in confounding in the negative direction for the
effect of mercury. If we reversed the constraints, we would overes-
timate the benefits of fish consumption because we would induce
confounding in the opposite direction. Other examples of such phe-
nomena are abundant in dietary epidemiology, where beneficial
and harmful components frequently exist in the same food.
Similarly, well water may include beneficial aspects such as trace
essential minerals (National Research Council Safe Drinking
Water Committee 1980) and harmful constituents such as metals
(Sanders et al. 2014). More generally, however, we found little
apparent benefit with respect to bias or variance at imposing the
directional homogeneity assumptionwhen estimating the effects of
mixtures, even when it was true. By avoiding the nonnegativity (or
nonpositivity) constraints, quantile g-computation can give a more
realistic estimate of the effect of the mixture as a whole. Further,
while our analysis focuses on the overall mixture effect, our
approach also yields b coefficients for an underlying generalized
linear model, which can be interpreted as adjusted, independent
effect sizes for quantized exposures (which will suffer variance
inflation in the adjusted analysis, like any other method that esti-
mates independent effects). Further, themixture under consideration

Table 4. Validity of WQS regression and quantile g-computation under nonnull estimates when directional homogeneity holds, individual exposure effects are
nonadditive, and the overall exposure effect includes terms for linear (w1) and squared (w2) exposure (e.g., quadratic polynomial) for 1,000 simulated samples
of n=500. Corresponding estimates for n=100 are provided in Table S2.

Scenario Method da
Biasb MCSEc RMVARd

w1 w2 w1 w2 w1 w2

7. Validity when the true exposure effect is nonadditive/nonlinear WQSe 4 0.21 –0:07 0.34 0.11 0.31 0.10
9 0.21 –0:07 0.73 0.24 0.64 0.21

14 0.13 –0:04 1.12 0.37 1.02 0.34

Q-gcompf 4 −0:01 0.00 0.13 0.04 0.13 0.04
9 0.00 0.00 0.16 0.03 0.16 0.04

14 0.00 0.00 0.19 0.04 0.18 0.04

8. Validity when the overall exposure effect is nonlinear due to
underlying nonlinear effects

WQSe 4 −0:20 0.07 0.31 0.12 0.31 0.10
9 −0:15 0.07 0.61 0.22 0.61 0.20

14 −0:11 0.05 0.97 0.34 0.98 0.32

Q-gcompf 4 −0:01 0.00 0.15 0.04 0.15 0.04
9 0.00 0.00 0.18 0.05 0.18 0.05

14 0.00 0.00 0.20 0.05 0.20 0.05

Note: MCSE, Monte Carlo standard error; RMVAR, root mean variance.
aTotal number of exposures in the model.
bEstimate of w1 or w2 minus the true value.
cStandard deviation of the bias across 1,000 iterations.
dSquare root of the mean of the variance estimates from the 1,000 simulations, which should equal MCSE if the variance estimator is unbiased.
eWeighted quantile sum regression (R package gWQS defaults, allowing for quadratic term for total exposure effect).
fQuantile g-computation (R package qgcomp defaults, including an interaction term between X1 and X2 (scenario 7) or a term for X1X1 (scenario 8) as well as quadratic term for total
exposure effect).
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could include only a subset of the measured exposures while con-
trolling for other measured exposures. Such conditional mixture
effects may be of interest in some settings where exposure sources
can be identified that influence the levels of some, but not all, com-
ponents of themixture.

Beyond our simulations in which the mixture was defined to
include all simulated exposures, the question “How do we define a
mixture?” is not clearly answered. However, our results provide
some guidance. If we have correlated exposures that are all causal,
then we usually ought to (if possible) include all correlated expo-
sures in the model to avoid copollutant confounding (as in the fish
consumption example and our scenario 5 simulation). We should
also account for interactions and nonlinearities, if they exist (as in
our scenarios 7 and 8 simulations). Outside of copollutant con-
founding, however, we demonstrated that quantile g-computation
is robust to the inclusion of noncausal noise variables, while bias
due to unmeasured confounding actually increases with the inclu-
sion of more noise variables for WQS regression. This phenom-
enon of increasing bias by including more covariates was also
observed when no confounding existed and an increasing number
of causal exposures were included, although the bias was toward
the null in that setting (scenario 4). Thus, the bias magnification
observed in scenario 5 is not akin to bias amplification, which is a
phenomenon of predictably increased unmeasured confounding
bias that occurs when examining independent effects of one expo-
sure and adjusting for a strong correlate of that exposure (e.g.,
Weisskopf et al. 2018). Of the two methods, quantile g-computa-
tion appears robust to varying definitions of the mixture and so
seems appealing in the context of undefined mixtures where we
may not have good prior knowledge of the constituent effects.

Notably, our results suggest that both quantile g-computation and
WQS regression, through their focus on the effect of the mixture as a
whole, do not necessarily suffer greatly from exposure correlation.
Intuitively, this is true because, as exposures becomemore correlated,
we gain more information on the expected effects of increasing every
exposure simultaneously in contrast with focusing on the effects of a
single exposurewhile holding others constant.

Othermethods could be used to estimate the effects of themixture
as a whole. For example, if we fit quantile-g computation without
using quantized exposures, the approach would yield an effect of
increasing every exposure by one unit—this is useful when one unit is
meaningful for all exposures. In that case, our approachwould simply
be g-computation (also known as the g-formula), which has been pre-
viously used to estimate the impacts of hypothetical interventions in
(among others) environmental and occupational (e.g., Cole et al.
2013; Edwards et al. 2014;Keil et al. 2018b) settings.More generally,
g-computation provides a useful framework to estimate the joint
effects of an exposure mixture (Robins et al. 2004), especially when
exposures vary over time (Keil et al. 2014) or when issues such as ex-
posure measurement error may be important (Edwards and Keil
2017). Thus, our approach is potentially extensible to such scenarios,
and its utility is worthy of future study. There are examples of using
such a frameworkwith Bayesian kernel machine regression (BKMR)
in amixtures-specific setting (Kupsco et al. 2019). Quantile g-compu-
tation is a simpler version of these approaches but with the added
strengths of being simple to implement and computationally frugal.

We posit that quantile g-computation (and the accompanying R
package qgcomp) provide a simple framework that allows a flexi-
ble approach to the analysis of mixtures data when the overall ex-
posure effect is of interest. Few methods explicitly estimate such
effects. One alternative method is BKMR, which uses Gaussian
process regression to fit a flexible function of the joint exposure
set. In contrast, quantile g-computation forces the user to specify a
parametric nonlinear model rather than assuming nonlinearity by
default. Whereas quantile g-computation allows estimation of

parsimonious mixture dose–response parameters, BKMR (and
many other data-adaptive or machine-learning approaches) does
not yield a mixture dose–response parameter that could be com-
pared with quantile g-computation in terms of the bias/variance
tradeoffs quantified in our analysis. Instead, BKMR (as imple-
mented in the R package bkmr) outputs a flexible prediction of the
outcome at quantiles of all exposures, which cannot be expressed
via a simple parametric function (which is required to assess the
bias of amixture dose–response parameter). Another way to under-
stand this distinction is that quantile g-computation estimates the
parameters of a joint marginal structural model, which quantify the
average (or baseline confounder/modifier conditional) effects of
modifying all exposures simultaneously. The interpretation ofmar-
ginal structural models is well described in the epidemiologic liter-
ature (e.g., Robins et al. 2000). A limitation of this approach, as
implemented in the qgcomp R package, is that if the underlying
model is not smooth (e.g., if the dose–response of an individual ex-
posure is a step function as when using indicator functions of indi-
vidual exposures), the marginal structural model (which, in the
current version of the package, can only be a polynomial function
of exposures) may not adequately capture the dose–response func-
tion. In such settings, standard g-computation may be employed at
a much higher computational and programming burden to the ana-
lyst. However, quantile g-computation may still provide useful
approximations of overall effects of the mixture. Our simulations
demonstrate that when the nonlinearities are known, quantile g-
computation is unbiased. Whether this holds in realistic settings
when nonlinearities are unknownwill depend on the subject matter
at hand and cannot be effectively explored via simulations without
being tied more strongly to specific exposures and outcomes. We
note that this is a potential limitation of parametric modeling in
general and is not particular to our approach. However, when
studying causal effects in general and mixture effects specifically,
model specification must be accurate for accurate inference, which
underscores the importance of allowing nonlinear and nonadditive
effects of individual exposures (Keil et al. 2014). Understanding
nonlinearity in the overall exposure effect is crucial for understand-
ing whether effects are mainly limited to a certain range of joint
exposures within themixture, which informswhether interventions
might be most impactful if they focused solely on individuals in a
specific exposure range.

The reliance of the qgcomp package on existing generalized
linear model frameworks allows one to easily include a variety of
flexible nonlinear/nonadditive features such as polynomial func-
tions, splines, interaction terms, or indicator functions on the
individual quantized exposures (which are each described in the
package documentation). While the utility of quantized exposures
will depend on the context, the impact of characterizing rich ex-
posure data as ordinal variables that are used as continuous
regressors is broadly unknown. Our simulation did not assess the
benefits and tradeoffs of using higher numbers of quantiles
because the exposures were simulated on the quantized, rather
than continuous, basis and little could be learned by increasing
the numbers of exposure levels in our simulation. We hypothe-
size that quantization confers some benefits of similar nonpara-
metric approaches such as rank regression, which are robust to
outliers, but may suffer from difficulty in extrapolating results to
other populations and reduced power when a linear model fits the
data well. This is an area worth more research in the exposure
mixtures context, where skewed exposure distributions may
result in unduly influential, extreme exposure values, and nonlin-
ear effects may be common.

We propose a method that builds on the desirable, simple out-
put fromWQS regression but is appropriate to use when the effects
of exposure may be beneficial, harmful, or harmless. In scenarios
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where we may not be able to rule out confounding or we may be
uncertain about the effect direction of some exposures in the mix-
ture, quantile g-computation is a simple and computationally effi-
cient approach to estimating associations between a mixture of
exposures and a health outcome of interest. Thus, our approach
may serve as a valuable tool for identifying mixtures with harmful
constituents or informing interventions that may prevent or reduce
multiple exposures within amixture.
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